HEAT CONDUCTION IN AN ELLIPTICAL CYLINDER

M. G. Kogan UDC 536.21

Direct analytical methods are applied to solve the third boundary problem of heat conduction
in an elliptical eylinder.

In solving the third boundary problem of heat conduction in hexahedra,the clagsical method of Lame
of separation of all the variables (spatial and temporal) encounters fundamental difficulties even when it is
possible to choose a separable system whose coordinate surfaces coincide with a boundary of the body (as,
for example, in the case considered here, of the elliptical cylinder)., The artificial use of the so-called
normal form of the solution involving a series of terms consisting of products of functions, each depending
on only one variable, predetermines a specific distribution law for the heat transfer coefficient, and, in
particular, a solution with completely separated variables corresponds only to a particular case wherein on
each boundary Biot's criterion is inversely proportional to the corresponding Lame coefficient [1], It is
clear that such a dependence of Biot's criterion on the geometrical parameters of the surface is not a con~
sequence of the physical nature of convective heat transfer, and therefore the classical solution of the third
boundary problem is of practical validity in a limited number of cases only,

In contrast to this,direct analytical methods are not beset with the fundamental limitations on either
the shape of the body or the boundary conditions, Such an extension of the class of solvable problems is
attained at the expense of not satisfying precisely the differential equation and boundary conditions. Direct
methods yield convergence in the mean over the region (or an exact satisfaction of the equation and boundary
conditions at individual points on certain curves and surfaces),

Their application to nonstationary heat conduction is based on Kantorovich's method [2], according to
which an approximate solution of the problem
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where the fj are the desired time functions and the ¢j are a priori selected coordinate functions.

Substitution of T into the differential equation and the boundary condition yields specific residuals,
Following Kantorovich we minimize these residuals so that at each instant of time they are orthogonal to
each of the coordinate functions throughout the region v + ¢ in which the temperature is defined, This re-
quirement leads to a system of ordinary differential equations. Its solution is the set of desired functions
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fj (FO), The constants of integration may be determined from the initial condition, minimizing for Fo =0
the mean square deviation of the solution from the given {; distribution (this operation reduces to the solu-
tion of a system of algebraic equations),

Such is the general method of solving both linear and nonlinear problems [3], However in the first
case it is possible to shorten substantially the amount of computation by first taking the Laplace transform
of Eqs, (1) and {2) with respect to the variable Fo and thus o obtain the boundary problem
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If from this we determine T as a function of the spatial coordinates and then take the inverse Laplace
transform, we obtain the desired nounstationary temperature field,

We seek an approximate solution of Egs, (1a) and (2a) in the form of a sum
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=t :

where @ is an approximate (or exact) solution of Eq. (la), and the ¢} are coordinate functions satisfying the
orthonormality condition

(91, @)= 8- (5a)

To determine the Fj we substitute from Eq. (4;&) into Eqe, (1a) and (2a) and apply Galerkin's method,
which requires the orthogonality of the residuals L(T) and M(T), so formed, to the coordinate functions ¢

(LT, @)°+MT), ¢)°=0. ®)
We substitute Eq, (4a) into Eq, (6) and change the orders of summation and integration:
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Using Green's formula
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we write Egs, (7) of Galerkin's method inthe symmetric form:
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where
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Let A denote the determinant of the matrix of the coefficients and let A;; be the cofactor of the element (i,
j). Then the solution of the algebraic system of Eqs. (9) assumes the following form:

n
Fij= A“lz (@ + B, +Ch Ay, ai
PES
From this we obtain
T= A“lz ¥ (@;+ By + C)) B9 (12)

i=1 j=1
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Fig., 1, Variation of the tem-
perature in a cross section of
a circular cylinder with Bi=5,
(The continuous curve repre-
sents the exact solution; dashed
curve, the approximate solu-
tion.)
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In the inversion of the Laplace transform we use the factorization theorem (which is applicable since
the determinant A, expanded as a polynomial in s, is of much higher degree than the algebraic cofactor
Ajj) and the convolution theorem, As a result of the transformation we obtain
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the s are the roots of the secular equation A(s) = 0; K'1 = d/ds A(sg); bj.="Bj; ¢j,="C;. Itis obvious that

2 “iAij is the determinant formed from A(sy) by replacing the elements of its j-th column by the @j. The
{=1

second summation in the expression for vi has a similar meaning, it being in general a function of the time,
In the particular case where the specific strength of the volume and surface sources, w and p, depends only
on the spatial coordinates,

K, {exp (s, Fo) lu, + s7'0,] — s 103}, (139)
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A comparison of the structure of formula (13) with the classical solution shows that the Ky are anal-
ogous to the Fourier— Lame coefficients, the uy are characteristic functions and the sy are characteristic
values,

If as the coordinate functions we choose algebraic or frigonometric polynomials, the convergence of
Galerkin's method follows from a theorem due to Weierstrass [2].

In order to obtain a better approximation with a small number of terms of the series (13) it is neces-
sary to select the coordinate functions corresponding to the geometric nature of the problem, To construct
these functions it is convenient to apply the process of successive orthogonalization to a system of funda-
mental functions , satisfying homogeneous boundary conditions of the form (2), if not exactly, then at least
approximately:
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By forming the scalar product (@, qﬂj)V, it is easy to verify that the coordinate functions constructed in this
way actually satisfy the orthonormality condition (5a).

We now apply the formulas obtained to the calculation of a plane-parallel nonstationary thermal field
in an elliptical cylinder with semiaxes @ and b, Exact solutions of the first and second boundary problems
for an elliptical cylinder may be expressed in terms of Mathieu functions, However,in the case of the third
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TABLE 1, First Five Characteristic Values s of the Circular Cyl-

inder (Bi = 5)
. 3
Tk 1 J 2 l 8 ’ 4 ’ 5
Approximate 1,1891 6,3515 15,8962 29,5523 51,8124
Exact 1,1875 6,3532 15,8281 - 29,900 48,7064

TABLE 2. First Five Characteristic Values s and Coefficients K
of the Solutions (13) for the Elliptical Cylinder (Bi = 5)

k 1 J 2 3 ’ 4 , 5
—s 1,,20599 6,35129 15,71763 ‘ 31,05346 79,52921
Ky —0,57284.10~3 | —0,11479-10-% |40, 751808.10-5 —0, 182442 10~ +0, 564034.10-7

boundary problem an exact solution (with separation of variables), as has already been noted, can be ob-
tained only for a special form of the dependence of the heat transfer coefficient on the coordinates of the

surface of the body., Such a result is of no practical value, It is therefore necessary to use approximate
methods of solution, We consider the special case w=p = 0; « = const; t; = const,

We carry through concrete calculations for two elliptical cylinders of eccentricities € =0 and £ = 0,8
{the first example furnishes a comparison with the known exact solutions for a circular cylinder), We put
Bi=5andn=5, i.e.,, we construct five coordinate functions (to save space, however, we write out only
the first three of them),

As fundamental functions we select the polynomials

ol oo T {2 (o 2T

and try to satisfy the homogeneous boundary conditions of the third kind having the form (2a). For the cir-
cular cylinder @ =b = 2R) we find directly that

Py=Q,=1; Pi' = Q' = Bi(Bi + m™.

Letting v = x* + y%, we obtain the following expressions for the functions :
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From these functions we construct through the successive orthogonalization (14) a set of orthonormal
coordinate functions
@, = 15847 4, @, = 8.8332 [, — 0.24086 ,],

95 = 36.8011 [1ps — 0.1256 p, —0.07291 ,].

Next we compute the sy, the roots of the secular equation A(g) = 0, corresponding to the system of
algebraic equations of the form (9), and, finally, to construct the final solution (13a), we define the functions
uk and the coefficients Kx. In Table 1, for comparison, we give the exact characterxstlc values, equal to
0.25 “k (in the notation of [4]) and the approximate values sj.

As is evident from the table, only the fourth and fifth characteristic values display a noticeable error
(1.5% and 6.5%). Therefore, already for Fo > 0.1, the approximate solution is close to the exact solution
(see Fig, 1).

In the general case of the elliptical cylinder we can no longer, using algebraic polynomials, satisfy
the boundary condition of the third kind over the wholelateral surface. Therefore, at the vertices of the
semiaxes a and b, we satisfy the boundary condition exactly, and at the remaining points, approximately.
This requirement leads to the following formulas
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Fig. 2, Variation of the temperature at a section of an
elliptical cylinder with Bi = 5: a) variation along the
semiaxes (continuous curve for the major axis; dashed
curve for the minor axis: Fo values are shown on the
curves) b} variation at the vertices of the semiaxes
{curves 1, 2, and 3 correspond, respectively, to the
vertex of the minor axis, and to the point (0, 0).
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The scalar products appearing in formulas (14) and (10) are determined by recursion relations in
which the integration over the volume is reduced to the calculation of factorials and that over the cylindri~
cal surface to the calculation of complete elliptic integrals of the first and second kind, To defermine the
values it is expedient to solve the homogeneous gystem obiained from the Galerkin equation {9) by an itera~
tional method ({the process converges rapidly owing to the predominance of the diagonal elements).

Using Eqs. (15) and (16) we obtain the following expressions for the first three fundamental functions:
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Next, in accord with Egs, (14), we determine the coordinate funétionﬁ

Py = 1.58757 Py, Gy = 8.84403 v, — 2.13035 9y,
95 = 44.38226 1, — 27.94131 1, — 10,88060 ;.
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Finally, we find the characteristic functions uy
1, = 0.15658-10° g, — 0.12003-10° @, -+ 0.36443-10% 5 4 0.55667- 101 @, -+ 0.19076.10% s,
iy = — 0,20817-10* @, —0.30062-10% @, -+ 0.79359-10* ¢, — 0.89209-10% ¢, + 0.36927-102 ,,

4y = 0.50617-10% @, + 0.61429-10% @, + 0.22762-10° @y — 0.11495-10° g, - 0.22654-10% b,

the characteristic values sk, and the coefficients Kk (Table 2).

In Fig. 2 we show the variation of the temperature during the cooling of an elliptical cylinder, As
was to be expected, the most rapid cooling occurs at the vertex of the major semiaxis. For the value
Bi = 5, assumed in the calculations, the regular regime is established beginning with Fo ~ 0.8,

Since the solutions (13) and (13a) contain a finite number of terms, the initial conditions are satisfied
with a certain error (see the curves for Fo = 0 in Fig. 2a). An extrapolation of the thermal curves (Fig.
2b) shows that this error no longer manifests itself after Fo= 0.1, '
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NOTATION

is the volume;

is the surface area;

is the generalized measure;

is the temperature;

is the time;

is the spatial coordinate;

is the normal to the surface;

is the specific volume heat capacity;

is the coefficient of thermal conductivity;
is the heat transfer coefficient;

is the Fourier number;

is the Biot number;

is the power per unit volume;

is the power per unit area;

is the eccentricity;

is the complete elliptic integral of the second kind;
is the Laplace operator;

is the determinant;

is the scalar product with respect to volume;

is the scalar product with respect to area;

is the Kronecker symbol;
denotes Laplace transform.
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